1=(x^2+4x+4)

Simple and best practice solution for 1=(x^2+4x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1=(x^2+4x+4) equation:



1=(x^2+4x+4)
We move all terms to the left:
1-((x^2+4x+4))=0
We calculate terms in parentheses: -((x^2+4x+4)), so:
(x^2+4x+4)
We get rid of parentheses
x^2+4x+4
Back to the equation:
-(x^2+4x+4)
We get rid of parentheses
-x^2-4x-4+1=0
We add all the numbers together, and all the variables
-1x^2-4x-3=0
a = -1; b = -4; c = -3;
Δ = b2-4ac
Δ = -42-4·(-1)·(-3)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2}{2*-1}=\frac{2}{-2} =-1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2}{2*-1}=\frac{6}{-2} =-3 $

See similar equations:

| c+7.1=17.8 | | -13+17=-4(x+9) | | 14+7q+11=-17+14q | | 7(x-4)-1=14 | | -5(1-2r)+5(6r+7)=-10 | | 2-5(3x+4)=-3 | | ⅓+1/7y=3/7y | | 8^(2x+1)=3(4)^x | | m/10+15=2 | | 3(2x=1)=21 | | 3x-5(x-5)=-9+5x-15 | | -19t+16-16=-20t-19 | | 6x-6=5x-9 | | -(7m+8)=4(17-m) | | x-5×7=3x+5 | | -4x-3(6x+9)=41 | | 4x+5x-1=18 | | -7m+2=37 | | 27(2-x)=-3(9x-5) | | -17=3+6n+4 | | 7x-5=10x-x-5 | | 4(2x+7)=-27+31 | | R+20r-7=-16+20r | | -10-3g=-25 | | 1+4a=5+6a | | 3x-12=6x-15 | | 5+11(2-x)=x-9 | | 10x-4=6x+40 | | 1.9b+0.95=-2.89-0.5b | | -10=-2s | | 1/4a-1/8=7/2a | | 6-5r+2r=9 |

Equations solver categories